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CONSTITUTIVE RELATIONS OF NONLINEAR THERMOELASTICITY

OF ANISOTROPIC BODIES

UDC 539.3A. A. Markin and M. Yu. Sokolova

Quasilinear relations for finite reversible deformation of anisotropic materials are obtained using
a thermomechanical approach. Free energy is written as a function of temperature and compatible
invariants of the logarithmic strain measure and basis tensors. Nonlinear thermomechanical effects
including different types of material behavior in tension and compression and the temperature depen-
dence of the elastic tensor are taken into account.
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The basic concepts of anisotropic thermoelasticity for infinitesimal strains are formulated in [1]. Some
problems of nonlinear elasticity of anisotropic materials are considered in [2]. In the present paper, a variant
of constitutive relations between stresses, finite strains, and temperature in an anisotropic elastic material are
obtained using the general thermodynamic approach proposed by Il’yushin [3] and Sedov [4] for studying deformation
processes.

We consider a representative macrovolume dV0 of density ρ0 at a temperature T0 in an anisotropic body in
the initial state. Heat input d′Q and displacements of the macrovolume walls, determined by the strain affinor Φ(t),
produce the temperature T (t) and stress S(t) fields in the macrovolume. The strain, stress, and temperature fields
inside the macrovolume are assumed to be homogeneous.

We consider homogeneous finite strain of the macrovolume. Transition of an elastic material from the
initial state at t = t0 to an arbitrary final state at t = tk is determined by time variation of the left distortion
measure U(t) [5]. We confine our attention to deformation processes for which U(t) = Ui(t)a

(k)
i a

(k)
i , where a(k)

i are
the unit vectors of the principal strain axes at the time t = tk and Ui(t) are the principal elongations. For these
processes, the principal strain axes coincide with the same material fibers. For convenience, we use the Hencky
tensor H = lnU [5] as a strain measure, which allows us to consider the volume-change and distortion processes
separately. The volume change is characterized by the first invariant of the Hencky measure ln (dV/dV0) = θ = H :
E, whereas the distortion is described by the deviator of this measure H̃ = H − (1/3)θE (E is the unit tensor).
As a stress measure, we use the generalized tensor of true stresses Σ = (dV /dV0)S, which is energy conjugate
with the Hencky measure. The first invariant of this tensor determines the hydrostatic stress in the macrovolume
−p = Σ : E.

We associate the deformation process of an anisotropic material with its image in Il’yushin’s six-dimensional
space [3]. In this space, the tensors H and Σ are represented by the six-dimensional vectors h and σ, respectively.
The vectors h and σ are determined by the relations of [3] from the components of the tensors H and Σ in the
coordinate system whose axes coincide with the principal axes of the initial material anisotropy with unit vectors e1,
e2, and e3. The basis vectors i0, i1, i2, i3, i4, and i5 of Il’yushin’s space are images of the tensors of the canonical
basis:

I0 = (e1e1 + e2e2 + e3e3)/
√

3, I1 = (2e3e3 − e1e1 − e2e2)/
√

6,

I2 = (e1e1 − e2e2)/
√

2, I3 = (e1e2 + e2e1)/
√

2, (1)

I4 = (e2e3 + e3e2)/
√

2, I5 = (e1e3 + e3e1)/
√

2.
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In the coordinate system associated with the principal axes of the material anisotropy, the fourth-rank
tensor N IV, which determines the properties of the anisotropic medium, has a canonical form. The image of
the tensor N IV is a second-rank tensor n; the components of these tensors are related by the direct and inverse
relations [6] (3/2)Nijkl = βαijnαββ

kl
β and (3/2)nαβ = βijαNijklβ

β
kl (where βijα and βαij are the known transition

matrices [3]).
For anisotropic materials with different types of symmetry properties, one can determine invariant subspaces

whose basis vectors remain unchanged under orthogonal transformations. The bases of these invariant subspaces
form the following vector sets:

1) i0, i1, i2, i3, i4, and i5 for triclinic material;
2) i0, i1, i2, and i3 for monoclinic material;
3) i0, i1, and i2 for rhombic (orthotropic) material;
4) i0 and i1 for tetragonal, trigonal, and hexagonal (transversely isotropic) materials;
5) i0 for Cubic and isotropic materials.
The existence of these sets of invariant basis vectors is implied by the invariance of the tensors of the canonical

basis (1) under orthogonal transformations of physical space.
For reversible processes, the basic thermomechanical relation of [3] has the form

ψ̇ + ηṪ = (1/ρ0)σ · ḣ, (2)

where ψ and η are the free energy and entropy per unit mass, respectively, T is the absolute temperature, and
(1/ρ0)σ · ḣ is the specific stress power.

Let the specific free energy be a function of strain and temperature: ψ = ψ(h, T ). Then,

ψ̇ =
∂ψ

∂h
· ḣ+

∂ψ

∂T
Ṫ . (3)

Comparing relations (2) and (3), we obtain the expressions for stresses and entropy

1
ρ0
σ =

∂ψ

∂h
, η = −∂ψ

∂T
, (4)

which are implied by the thermomechanical approach [3, 4].
We write the free energy in the form accepted in linear anisotropic thermoelasticity [1]:

ψ = (1/2ρ0)h · n · h− (1/ρ0)b · h(T − T0) + Ch(T − T0)2/(2T0). (5)

We assume that the tensor n depends on strains: n = n(h) and the vector b depends on temperature: b = b(T ).
For constant strains, the specific heat is denoted by Ch.

Differentiation of (5) with allowance for (4) yields

σ = n(h) · h+
1
2
h · dn

dh
· h− b(T − T0); (6)

η =
1
ρ0

(
b+

∂b

∂T
(T − T0)

)
· h− Ch

T0
(T − T0).

To make the constitutive relations (6) more specific, we write the tensor function n(h) in the form of dyadic
expansion

n(h) = c+
m−1∑
α=0

cα(iαh+ hiα). (7)

Here c is the constant tensor of the material properties, cα are the material constants, m is the dimension of the
invariant subspace for the material, and iα are the basis vectors of invariant subspaces (see sets 1–5).

The dimension m of the invariant subspace for anisotropic materials of different types is determined by the
number of basis vectors in sets 1–5. For example, m = 1 for an isotropic material, m = 2 for a transversely isotropic
material, and m = 3 for an orthotropic material. Relations (7) may be used not only for these types of materials
but also for media with more complex anisotropic properties, for example, monoclinic and triclinic media.
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We find the derivative dn/dh that enters (6), assuming that the basis vectors iα remain unchanged during
deformation:

dn

dh
=
m−1∑
α=0

cα

(
iα
dh

dh
+
dh

dh
iα

)
,

dh

dh
=

5∑
α=0

iαiα = E6

(E6 is the unity tensor in the six-dimensional space).
Combining relations (6) and (7), we obtain the stress vector

σ =
[
c+

m−1∑
α=0

cα(iαh+ hiα + hαE6)
]
· h− b(T − T0), (8)

where hα = iα · h.
Setting the constants cα in (8) equal to zero and assuming that the vector b is constant, we obtain general-

ization of the Duhamel–Neumann relations [1] to the case of finite strains.
It follows from relations (6) that the vector b(T − T0) = σ|h=0 is the vector of temperature stresses that

occur in the macrovolume due to a temperature change for zero strains. We find a relation between the vector
function b(T ) and the temperature strains of the macrovolume hT . The temperature strains are understood as
strains that occur in a nonconstrained macrovolume for σ = 0 due to a temperature change:

hT = h
∣∣∣
σ=0

.

Setting σ = 0 in (8), we obtain

b(T − T0) =
[
c+

m−1∑
α=0

cα(iαhT + hT iα + hTαE6)
]
· hT , (9)

where hTα = iα · hT .
Relation (9) expresses the vector function b(T ) that enters (8) in terms of temperature strains, which can

be determined experimentally and represented in the form of a certain function of temperature. In particular, the
vector hT can be written in the form accepted in the linear theory

hT = a(T − T0), (10)

where a is the direction vector of temperature strains.
The vector a in (10) is the image of the tensor of thermal-expansion coefficients A in Il’yushin’s space.

Substituting (10) into (9), we obtain the following relation between the direction vectors of temperature stresses
and temperature strains:

b = c · a+ (T − T0)
m−1∑
α=0

cα(a · a)
(
E6 + 2

aa

a · a

)
· iα. (11)

Setting all the coefficients cα in (11) equal to zero, we arrive at the well-known linear relation between
thermomechanical characteristics of the material b = c · a [1].

Inserting (9) into (8), we write the constitutive relations as

σ = n(h,hT ) · (h− hT ), (12)

where n(h,hT ) = c+
m−1∑
α=0

cα[iα(h+ hT ) + (h+ hT )iα + (hα + hTα)E6].

If all the constants cα are set equal to zero and strains are assumed to be infinitesimal (h = ε), Eq. (12)
yields the well-known relations of linear thermoelasticity σ = c(ε − εT ), used to formulate and solve boundary-
value problems. In the constitutive relations (12), the tensor n depends not only on the current strains h but also
on temperature. Hence, these relations take into account the temperature dependence of elastic properties of a
medium.

We write the constitutive relations (12) in the physical three-dimensional space with allowance for one-to-
one correspondence between six-dimensional vectors and second-rank tensors. As a result, we obtain the relation
between the generalized tensor of true stresses and tensor of the Hencky strains

Σ = N IV(H,HT ) : (H −HT ), (13)
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Fig. 1

where N IV = CIV +
m−1∑
α=0

cα[Iα(H +HT ) + (H +HT )Iα + (hα + hTα)EIV], CIV is the fourth-rank elastic tensor,

Iα are the tensors of the canonical basis (1), HT is the temperature-strain tensor, EIV =
5∑

β=0

IβIβ is the fourth-rank

unit tensor, and m is the dimension of the invariant subspace.
To construct relations (12) or (13) for a particular material, one needs experimental data on determining

the elastic tensor from the initial portion of strain diagram (h → 0) [7]. To find the vector hT , it is necessary
to perform experiments to determine thermal-expansion coefficients of materials, which are described in [8]. The
constants cα can be found from tests on uniaxial tension of materials along the axes of anisotropy. For an isotropic
material, the constant c0 can be determined from one test on tension in an arbitrary direction; for a transversely
isotropic material, it is sufficient to perform two tests on tension in the direction of transverse isotropy and transverse
direction. For an orthotropic material, the constants c0, c1, and c2 can be found from three tests on tension along
three principal axes of anisotropy. In the latter case, experimental diagrams are approximated by parabolas whose
coefficients determine the desired constants.

For isothermal processes (T = T0 and HT = 0), the constitutive relations (13) become

Σ =
[
CIV +

m−1∑
α=0

cα(IαH +HIα + hαE
IV)
]

: H. (14)

By virtue of their nonlinearity, relations (14) govern the behavior of materials with different characteristics
in tension and compression.

Let a cube from a transversely isotropic material be subjected to uniaxial strain along the axis of transverse
isotropy e3. In this case, strains are characterized by the elongations λ3 6= 1 and λ1 = λ2 = 1 and the stresses Σ33

are given by

Σ33 = (C3333 +
√

3 (c0 +
√

2c1) lnλ3) lnλ3,

where C3333 is the elastic modulus of the transversely isotropic material in the direction of the principal axis.
For deformation of the cube along the transverse axis (λ2 6= 1 and λ1 = λ3 = 1), the stresses Σ22 have the

form

Σ22 = (C2222 + (
√

3/
√

2)(
√

2c0 − c1) lnλ2) lnλ2.

Here C2222 is the elastic modulus of the transversely isotropic material in the transverse direction.
Figure 1 shows the dependences Σ̄33(lnλ3) and Σ̄22(lnλ2) (curves 1 and 2, respectively) for a material with

the parameters C2222/C3333 = 0.5, c0/C3333 = 0.25, and c1/C
3333 = 0.05. One can see that the curves of tension

and compression strains do not coincide. In contrast to the known models of materials with different compression
and tension moduli [9], relations (14) describe a continuous change in the tangent modulus in the case of a varied
deformation direction in the neighborhood of the point lnλ3 = 0, lnλ2 = 0.
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We now consider triaxial isothermal deformation of a cube from a transversely isotropic material whose axes
of anisotropy do not coincide with the direction of the cube edges. We denote the elongations of the edges by λ1, λ2,
and λ3. An analysis of relations (13) shows that, in this case of “pure” strain, the structure of the tensor N IV(H)
becomes different, which alters the type of initial anisotropy of the material. For an arbitrary combination of the
elongations λ1, λ2, and λ3, the material becomes triclinic, i.e, acquires the general type of property symmetry.

In summary, the constitutive relations of nonlinear anisotropic elasticity proposed take into account the non-
linear dependence of stresses on temperature, the dependence of the elastic properties of a material on temperature
variation during deformation, the different behavior of an anisotropic material in tension and compression, and the
change in the type of anisotropy during deformation.
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